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1 Manifold View of a Truss 
 
Within the large strains regime, manifold theory is used in order to define a truss in the most 
fundamental way. The truss is defined as a three–dimensional differentiable manifold, whose particles 
are identified via three parameters (s1, s2, s3) that belong to a closed set of the set R of real numbers, 
with the controlling one–dimensional submanifold s1 being globally homeomorphic to R. We 
postulate the existence of a one parameter family A(s1) = A of bounded areas in R2 that describes the 
cross section of the prismatic truss.  
 
All possible truss configurations that are generated–by–embeddings of the truss manifold in the 
Euclidean space are denoted by , with m corresponding to some possible configuration labeling, 
such that m = 0 gives the natural reference configuration [2].  
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2 Truss Kinematics 
 
Acceptable homogeneous embeddings of the s1 truss submanifold in the Euclidean space are 
assumed to correspond to straight line segments having length (determined solely from the global 
coordinates of its ends), while acceptable homogeneous embeddings of the s

Lm
2–s3 truss submanifold 

correspond to bounded plane surfaces having area  and being normal to the embedded sAm 1 line.  
 
Unique orthogonal frames can be constructed in each configuration, and, assuming mutually 
orthogonal cross–section spanning vectors, it is shown that for the truss, Hill’s large strain measures 
(which measure the strain experienced by  the truss in going from some arbitrary reference 
configuration to ) are given by [1, 4, and 5]: Cn Cm
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where is a diagonal stretch matrix [1–3], and I is the unit matrix.  Λmn
 
3 Stress – Strain Conjugacy 
 
Following [4, 5], it is found that conjugacy between various stress and strain measures, depends on 
the reckoned truss’s volume. Some conjugacy issues were studied in the test case that follows. 
 
Let’s assume that the truss’s strain energy vanishes at the natural reference configuration. Using the 
simplest, linear hyperelastic constitutive law and the truss’s boundary conditions (vanishing stresses at 
the truss’s bounding surface except at the end cross section), while reckoning conjugacy with respect 
to the current truss volume , it is found that the truss’s strain energy , is: Vm Um
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where,  is the first component of the( )( 110
km ε ( )km ε0 tensor. At the same time, it is found, that the 

cross sectional area of the truss should satisfy: 
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( ) ( )N0 is the prestressing force, whereas k
Vn mE and k

Vn mn are constitutive fourth order tensors that 
depend on the adopted strain measure (superscript), on the reference configuration chosen (left 
subscript), as well as on the volume used to define conjugacy (right subscript). A particular form of 
(2) is found in [1] for = 0 (Logarithmic Strain).  k
 
If instead of the current truss volume , the natural reference volume is used in defining 
conjugacy, we find (keeping the same type of material law) that the truss’s strain energy is: 
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By (2), (3) and (4), we see that when conjugacy is reckoned with respect to , no constraint of the 
type (3) is needed, whereas when conjugacy is defined with respect to , (3) is needed in order to 
comply with this simple hyperelastic constitutive law and the truss’s boundary conditions.  
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4 Concluding Remarks 
 
Results of the present work indicate that if conjugacy is reckoned with respect to the current volume, 
then even in this simple test case, the structural behavior of the truss depends on its cross sectional 
kinematics. Hence, when the strains are large, the way the truss’s cross section changes shape and 
area, affects its structural behavior. Thus, the large strains truss is like a semi–one–dimensional 
problem, whose proper definition requires fundamental understanding of its kinematics, kinetics, 
constraints, constitutive laws and conjugacy. In other words, quoting [3], “…with little exaggeration, 
there are no one - dimensional problems…”. 
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